Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.454
Filtrar
1.
Cell Death Dis ; 15(4): 252, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589352

RESUMEN

Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Proliferación Celular/genética , Diferenciación Celular , Antígenos de Diferenciación , Transglutaminasas/genética , Transglutaminasas/metabolismo , Línea Celular Tumoral
2.
NPJ Biofilms Microbiomes ; 10(1): 39, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589501

RESUMEN

Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum, Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that Fusobacterium nucleatum might contribute to cellular invasion via crosstalk with E-cadherin/ß-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Microbiota , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Epigenómica , Disbiosis , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Bacterias , Fusobacterium nucleatum , Neoplasias de Cabeza y Cuello/genética , Epigénesis Genética , Microambiente Tumoral
3.
Medicine (Baltimore) ; 103(16): e37831, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640322

RESUMEN

Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Redes Reguladoras de Genes , Neoplasias de la Boca/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Neoplasias de Cabeza y Cuello/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica/genética , Ciclina A2/genética , Proteína Quinasa CDC2/genética
4.
Clin Epigenetics ; 16(1): 54, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600608

RESUMEN

The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Complejo Represivo Polycomb 2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
5.
Cancer Immunol Immunother ; 73(6): 110, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662248

RESUMEN

Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Interleucina-33 , Activación de Linfocitos , Interleucina-33/metabolismo , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Animales , Activación de Linfocitos/inmunología , Invasividad Neoplásica , Ratones , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Femenino
6.
Cancer Rep (Hoboken) ; 7(4): e2057, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662366

RESUMEN

AIMS: Cervical cancer (CC) is a common malignancy in women, predominantly caused by human papillomavirus. The most subtypes are adenocarcinomas (AC) and squamous cell carcinomas (SCC), which show various features and treatment responses. Programmed death-ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) as Immune checkpoint molecules, play a role in immune evasion. We investigated PD-L1 expression in AC and SCC of the cervix and explored its link to clinical characteristics. METHODS AND RESULTS: The present cross-sectional research was done between 2016 and 2022 on samples in Shahid Beheshti University of Medical Sciences-affiliated hospitals in Iran. Histological tissue samples of CCs (16 AC and 48 SCC) were assessed, and clinical information was obtained by reviewing their medical documents. PD-L1 expression was evaluated by immunohistochemistry and we used the combined positive score. SCC cases showed a higher (not significant) PD-L1 expression. The PD-L1 expression and clinical characteristics were not significantly correlated in both subgroups. CONCLUSION: Although SCC cases exhibited higher PD-L1 expression, this difference was non-significant. More investigations should highlight the role of PD-L1 in CC and the potential benefits of immunotherapy.


Asunto(s)
Adenocarcinoma , Antígeno B7-H1 , Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/terapia , Femenino , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análisis , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Estudios Transversales , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Persona de Mediana Edad , Adulto , Adhesión en Parafina , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Irán , Anciano , Inmunohistoquímica
7.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473906

RESUMEN

Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/metabolismo , Proteína Kangai-1/metabolismo , Tetraspaninas/metabolismo , Proteínas S100 , Biomarcadores , Proteína A7 de Unión a Calcio de la Familia S100
8.
Sci Rep ; 14(1): 7304, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538801

RESUMEN

TGFß has roles in inflammation, wound healing, epithelial to mesenchymal transition (EMT), and cancer stem cell states, and acts as a tumor suppressor gene for squamous cell carcinoma (SCC). SCCs are also characterized by high levels of ΔNp63, which induces epithelial cell phenotypes and maintains squamous stem cells. Previous studies indicate a complex interplay between ΔNp63 and TGFß signaling, with contradictory effects reported. We investigated the effects of TGFß on p63 isoform proteins and mRNAs in non-malignant squamous and SCC cells, and the role of either canonical or non-canonical TGFß signaling pathways. TGFß selectively increased ΔNp63 protein levels in non-malignant keratinocytes in association with SMAD3 activation and was prevented by TGFß receptor inhibition, indicating activation of canonical TGFß pathway signaling. TP63 isoform mRNAs showed discordance from protein levels, with an initial increase in both TAP63 and ΔNP63 mRNAs followed by a decrease at later times. These data demonstrate complex and heterogeneous effects of TGFß in squamous cells that depend on the extent of canonical TGFß pathway aberrations. The interplay between TGFß and p63 is likely to influence the magnitude of EMT states in SCC, with clinical implications for tumor progression and response to therapy.


Asunto(s)
Carcinoma de Células Escamosas , Transición Epitelial-Mesenquimal , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta , Células Epiteliales/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Appl Immunohistochem Mol Morphol ; 32(4): 169-175, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478384

RESUMEN

OBJECTIVE: To assess the expression of early growth response 3 (EGR3) in normal skin and different types of skin tumors: cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), melanoma (MM), and cutaneous adnexal tumors containing sebaceous carcinoma (SC), trichoepithelioma (TE) and clear cell hidradenoma (CCH). BACKGROUND: EGR3, expressed in multiple organs, including skin, plays an important role in cell differentiation and tumor growth. Previous studies have shown that EGR3 suppresses tumor growth and is downregulated in various malignancies. However, its distribution in normal skin and its expression especially in skin tumors have not been studied. MATERIALS AND METHODS: Samples of normal cases (n = 4), cSCC (n = 12), BCC (n = 12), MM (n = 12), SC (n = 4), TE (n = 4), and CCH (n = 4) were collected from patients treated in our department between 2018 and 2023. Immunohistochemistry was used to investigate the expression of EGR3. The results were analyzed with the description of the staining pattern and the histochemical score. RESULTS: Immunohistochemical staining showed that EGR3 was uniquely expressed in normal skin in the granular layer and upper part of the stratum spinosum, as well as in sebaceous glands and hair follicles, but not in sweat glands. In skin cancers, BCC, SC, and TE showed positive EGR3 staining, whereas cSCC, MM, and CCH were negative. CONCLUSIONS: EGR3 has a specific expression pattern in normal skin and in skin tumors, which is important for the differential diagnosis of skin tumors, in particular for cSCC and sebaceous gland carcinoma.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Melanoma , Neoplasias Basocelulares , Neoplasias Cutáneas , Humanos , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Melanoma/metabolismo , Piel/patología , Neoplasias Cutáneas/patología
10.
Cancer Lett ; 588: 216813, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38499266

RESUMEN

Rat model of N-nitrosomethylbenzylamine (NMBzA)-induced esophageal squamous cell carcinoma (ESCC) is routinely used to study ESCC initiation, progression and new therapeutic strategies. However, the model is time-consuming and malignant tumor incidences are low. Here, we report the usage of multi-kinase inhibitor sorafenib as a tumor promoter to establish an efficient two-stage NMBzA-induced rat ESCC carcinogenesis model, resulting in increments of tumor incidences and shortened tumor formation times. By establishing the model and applying whole-genome sequencing, we discover that benign papillomas and malignant ESCCs harbor most of the "driver" events found in rat ESCCs (e.g. recurrent mutations in Ras family, the Hippo and Notch pathways and histone modifier genes) and the mutational landscapes of rat and human ESCCs overlap extensively. We generate tumor cell lines derived from NMBzA-induced papillomas and ESCCs, showing that papilloma cells retain more characteristics of normal epithelial cells than carcinoma cells, especially their exhibitions of normal rat cell karyotypes and inabilities of forming tumors in immunodeficient mice. Three-dimensional (3-D) organoid cultures and single cell RNA sequencing (scRNA-seq) indicate that, when compared to control- and papilloma-organoids, ESCC-organoids display salient abnormalities at tissue and single-cell levels. Multi-omic analyses indicate that NMBzA-induced rat ESCCs are accompanied by progressive hyperactivations of the FAT-Hippo-YAP1 axis and siRNA or inhibitors of YAP1 block the growth of rat ESCCs. Taken together, these studies provide a framework of using an effective rat ESCC model to investigate multilevel functional genomics of ESCC carcinogenesis, which justify targeting YAP1 as a therapeutic strategy for ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Dimetilnitrosamina/análogos & derivados , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Papiloma , Humanos , Ratas , Ratones , Animales , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/inducido químicamente , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Carcinogénesis
11.
Cancer Lett ; 589: 216833, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548217

RESUMEN

Understanding the intrinsic mechanisms underpinning cancer metabolism and therapeutic resistance is of central importance for effective nutrition-starvation therapies. Here, we report that Interleukin 1A (IL1A) mRNA and IL-1α protein facilitate glutathione (GSH) synthesis to counteract oxidative stress and resistance against nutrition-starvation therapy in oral squamous cell carcinoma (OSCC). The expression of IL1A mRNA was elevated in the case of OSCC associated with unfavorable clinical outcomes. Both IL1A mRNA and IL-1α protein expression were increased under glucose-deprivation in vitro and in vivo. The transcription of IL1A mRNA was regulated in an NRF2-dependent manner in OSCC cell lines under glucose-deprivation. Moreover, the IL-1α conferred resistance to oxidative stress via GSH synthesis in OSCC cell lines. The intratumoral administration of siRNAs against IL1A mRNA markedly reversed GSH production and sensitized OSCC cells to Anlotinib in HN6 xenograft models. Overall, the current study demonstrates novel evidence that the autocrine IL-1α favors endogenous anti-oxidative process and confers therapeutic resistance to nutrition-starvation in OSCCs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Estrés Oxidativo , Glutatión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral
12.
J Control Release ; 368: 623-636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479445

RESUMEN

Chemoresistance to cisplatin remains a significant challenge affecting the prognosis of advanced oral squamous cell carcinoma (OSCC). However, the specific biomarkers and underlying mechanisms responsible for cisplatin resistance remain elusive. Through comprehensive bioinformatic analyses, we identified a potential biomarker, BCL2 associated athanogene-1 (BAG1), showing elevated expression in head and neck squamous cell carcinoma (HNSCC). Since OSCC represents the primary pathological type of HNSCC, we investigated BAG1 expression in human tumor tissues and cisplatin resistant OSCC cell lines, revealing that silencing BAG1 induced apoptosis in cisplatin-resistant cells both in vitro and in vivo. This effect led to impaired cell viability of cisplatin resistant OSCC cells and indicated a positive correlation between BAG1 expression and the G1/S transition during cell proliferation. Based on these insights, the administration of a CDK4/6 inhibitor in combination with cisplatin effectively overcame cisplatin resistance in OSCC through the CDK4/6-BAG1 axis. Additionally, to enable simultaneous drug delivery and enhance synergistic antitumor efficacy, we developed a novel supramolecular nanodrug LEE011-FFERGD/CDDP, which was validated in an OSCC orthotopic mouse model. In summary, our study highlights the potential of a combined administration of CDK4/6 inhibitor and cisplatin as a promising therapeutic regimen for treating advanced or cisplatin resistant OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Neoplasias de la Boca , Nanopartículas , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores
13.
Clin Exp Dent Res ; 10(2): e877, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38481355

RESUMEN

OBJECTIVES: Recent studies highlighted the role of miR expressed in saliva as reliable diagnostic and prognostic tools in the long-term monitoring of cancer processes such as oral squamous carcinoma (OSCC). Based on a few previous studies, it seems the miR-3928 can be considered a master regulator in carcinogenesis, and it can be therapeutically exploited. This is the first study that compared oral potentially malignant disorder (OLP) and malignant (OSCC) lesions for miR-3928 expression. MATERIALS AND METHODS: In this cross-sectional study, saliva samples from 30 healthy control individuals, 30 patients with erosive/atrophic oral lichen planus, and 31 patients with OSCC were collected. The evaluation of miR-3928 expression by q-PCR and its correlation with clinicopathological indices were analyzed by Shapiro-Wilk, Kruskal-Wallis, Pearson's χ2 , and Mann-Whitney tests. The p-value less than .05 indicated statistically significant results. RESULTS: Based on nonparametric Kruskal-Wallis test results, there was a statistically significant difference between the ages of three study groups (p < .05). This test demonstrated a statistically significant difference between the average of miR-3928 expression in three study groups (p < .05). The result of the χ2  test showed a statistically significant difference in miR-3928 expression between patients with OLP (p = .01) and also patients with OSCC (p < .0001) in comparison to the control group. CONCLUSIONS: The salivary miR-3928 can play a tumor suppressive role in the pathobiology of OSCC, and it is significantly downregulated in patients. According to the potential tumor suppressive role of miR-3928 in the OSCC process, we can consider this microRNA as a biomarker for future early diagnosis, screening, and potential target therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Liquen Plano Oral , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Liquen Plano Oral/diagnóstico , Liquen Plano Oral/genética , Estudios Transversales , Regulación hacia Abajo , Biomarcadores/análisis , MicroARNs/genética
14.
Gene ; 910: 148321, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38428621

RESUMEN

Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Infecciones por Papillomavirus , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Transcriptoma/genética , 60414 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Perfilación de la Expresión Génica , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Proteínas Portadoras/genética
15.
Steroids ; 205: 109393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458369

RESUMEN

Diosgenin can inhibit the proliferation and cause apoptosis of various tumor cells, and its inhibitory effect on oral squamous cell carcinoma (OSCC) and its mechanism are still unclear. In this study, we predicted the targets of diosgenin for the treatment of OSCC through the database, then performed bioinformatics analysis of the targets, and further verified the effect of diosgenin on the activity of OSCC cell line HSC-3, the transcriptional profile of the targets and the molecular docking of the targets with diosgenin. The results revealed that there were 146 potential targets of diosgenin for OSCC treatment, which involved signaling pathways such as Ras, TNF, PI3K-AKT, HIF, NF-κB, and could regulate cellular activity through apoptosis, autophagy, proliferation and differentiation, inflammatory response, DNA repair, etc. Diosgenin significantly inhibited HSC-3 cell activity. The genes such as AKT1, MET1, SRC1, APP1, CCND1, MYC, PTGS2, AR, NFKB1, BIRC2, MDM2, BCL2L1, MMP2, may be important targets of its action, not only their expression was regulated by diosgenin but also their proteins had a high binding energy with diosgenin. These results suggest that diosgenin may have a therapeutic effect on OSCC through AKT1, MMP2 and other targets and multiple signaling pathways, which is of potential clinical value.


Asunto(s)
Carcinoma de Células Escamosas , Diosgenina , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Metaloproteinasa 2 de la Matriz/farmacología , Diosgenina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
BMC Cancer ; 24(1): 338, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486210

RESUMEN

Patients at risk of skin cancers can develop varying types of cutaneous malignancies. However, some subjects may develop only one type of lesion. In this cross-sectional study, the spectrum of premalignant (PM) and malignant skin lesions and their risk factors were studied. Therefore, 505 adult subjects (aged 21-79 years, 256 males and 249 females, 96 with immunosuppression) at risk of any type of skin cancer were examined for cutaneous malignancies, nevi, actinic keratoses, photodamage, and possible risk factors. First, 12 different groups were identified with a varying set of PM and/or malignant skin lesions. Next, 5 larger groups were formed from them: basal cell carcinoma (BCC) only, malignant melanoma (MM) only, squamous cell carcinoma (SCC) and/or PM, BCC + SCC and/or PM, and MM + keratinocyte carcinoma (KC) and/or PM. The groups with BCC or MM only were younger and showed less photodamage than the mixed groups, while SCC/PM showed similarity with them. In logistic regression analyses, the platelet-to-lymphocyte ratio was associated with an increased risk of concomitant KC (OR 1.028, p = 0.023) or SCC/PM (OR 1.009, p = 0.047) in subjects with MM or BCC, respectively. Actinic keratoses produced ORs 0.246-0.252 (p = 0.008-0.020) for BCC in subjects with SCC/PM. Interestingly, atypical mole syndrome decreased the risk of SCC/PM in subjects with BCC (OR 0.092, p = 0.001). Advanced age was a significant risk factor for an additional type of lesion in all 3 comparisons (ORs 1.088-1.388, p = 0.001). In conclusion, even though there are numerous patients with only one lesion type, advancing age may determine the final lesion multiplicity.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Queratosis Actínica , Melanoma , Enfermedades de la Piel , Neoplasias Cutáneas , Adulto , Masculino , Femenino , Humanos , Queratosis Actínica/epidemiología , Estudios Transversales , Neoplasias Cutáneas/metabolismo , Carcinoma Basocelular/epidemiología , Carcinoma de Células Escamosas/metabolismo , Melanoma/epidemiología , Melanoma/complicaciones
17.
Cancer Med ; 13(5): e6985, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491819

RESUMEN

BACKGROUND: Aberrant Notch signaling pathway has been related with the tumorigenesis in head and neck region, involving oral cavity. Here, we report the correlation between mutations in the Notch signaling pathway and CD8+ T-cell infiltration via PD-L1, which lead to enhanced antitumor immunity and may target for immune-checkpoint inhibitors (ICIs) therapy. METHODS: This retrospective study analyzed the results of immunohistochemical staining for PD-L1 and CD8+ T-cell infiltration in 10 patients and whole-exome sequencing (WES) was conducted on five of these patients to identify frequently mutated genes. RESULTS: Four of 10 patients were positive for PD-L1 and CD8+ T. By analyzing WES in three of these four patients, we notably identified the mutations of NOTCH1, FBXW7, and noncoding RNA intronic mutation in NOTCH2NLR in two of these three patients. This study may enable better selection of ICI therapy with CD8+ T-cell infiltration via PD-L1 expression for oral squamous cell carcinoma patients with mutations in Notch signaling pathway.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/metabolismo , Estudios Retrospectivos , Antígeno B7-H1/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Linfocitos T CD8-positivos , Neoplasias de Cabeza y Cuello/patología
18.
Exp Eye Res ; 241: 109851, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453039

RESUMEN

The accumulation of oleic acid (OA) in the meibum from patients with meibomian gland dysfunction (MGD) suggests that it may contribute to meibomian gland (MG) functional disorder, as it is a potent stimulator of acne-related lipogenesis and inflammation in sebaceous gland. Therefore, we investigate whether OA induces lipogenesis and inflammasome activation in organotypic cultured mouse MG and human meibomian gland epithelial cells (HMGECs). Organotypic cultured mouse MG and HMGECs were exposed to OA or combinations with specific AMPK agonists 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Lipogenic status, ductal keratinization, squamous metaplasia, NLRP3/ASC/Caspase-1 inflammasome activation, proinflammatory cytokine IL-1ß production, and AMPK pathway phosphorylation in MG were subsequently examined by lipid staining, immunofluorescence staining, immunohistochemical staining, ELISA assay, and Western blot analyses. We found that OA significantly induced lipid accumulation, ductal keratinization, and squamous metaplasia in organotypic cultured MG, as evidenced by increased lipids deposition within acini and duct, upregulated expression of lipogenic proteins (SREBP-1 and HMGCR), and elevation of K10/Sprr1b. Additionally, OA induced NLRP3/ASC/Caspase-1 inflammasome activation, cleavage of Caspase-1, and production of downstream proinflammatory cytokine IL-1ß. The findings of lipogenesis and NLRP3-related proinflammatory response in OA-stimulated HMGECs were consistent with those in organotypic cultured MG. OA exposure downregulated phospho-AMPK in two models, while AICAR treatment alleviated lipogenesis by improving AMPK/ACC phosphorylation and SREBP-1/HMGCR expression. Furthermore, AMPK amelioration inhibited activation of the NLRP3/ASC/Caspase-1 axis and secretion of IL-1ß, thereby relieving the OA-induced proinflammatory response. These results demonstrated that OA induced lipogenic disorder and NLRP3 inflammasome activation in organotypic cultured mouse MG and HMGECs by suppressing the AMPK signaling pathway, indicating OA may play an etiological role in MGD.


Asunto(s)
Carcinoma de Células Escamosas , Inflamasomas , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Glándulas Tarsales/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lipogénesis , Células Epiteliales/metabolismo , Caspasa 1/metabolismo , Citocinas/metabolismo , Metaplasia/metabolismo , Carcinoma de Células Escamosas/metabolismo , Interleucina-1beta/metabolismo
19.
Chem Biol Drug Des ; 103(3): e14492, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38485457

RESUMEN

Recent evidence has proved that thymoquinone as a natural polyphenol has great anticancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the effects of thymoquinone on increasing cisplatin-induced apoptosis human oral squamous cell carcinoma cells and its underlying molecular mechanisms. SCC-25 cancer cells treated by thymoquinone and cisplatin with different concentrations. Cell viability will determine by using MTT assay. The concentrations of reactive oxygen species (ROS) and antioxidant activities were determined using specific related kits. DNA damage, lipid, and protein oxidation were assessed. Real-time PCR and Western blot analysis will be used to determine the expression of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Combination of thymoquinone and cisplatin suppressed synergistically SCC-25 cancer cell viability and induced apoptosis in dose-depended manner. Cell treatment with combination of thymoquinone and cisplatin led to accumulation of ROS within cells and increase in the intracellular levels of DNA damage, protein and lipid peroxidation. In addition, the combination of thymoquinone and cisplatin modulated the mRNA and protein expression levels of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Thymoquinone potentiated cisplatin anti-cancer effect on OSCC by inducing oxidative stress in cells.


Asunto(s)
Benzoquinonas , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Caspasa 3/genética , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés Oxidativo , Línea Celular Tumoral
20.
JCI Insight ; 9(6)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38516891

RESUMEN

BACKGROUNDTransrenal cell-free tumor DNA (TR-ctDNA), which transits from the bloodstream into urine, has the potential to enable noninvasive cancer detection for a wide variety of nonurologic cancer types.MethodsUsing whole-genome sequencing, we discovered that urine TR-ctDNA fragments across multiple cancer types are predominantly ultrashort (<50 bp) and, therefore, likely to be missed by conventional ctDNA assays. We developed an ultrashort droplet digital PCR assay to detect TR-ctDNA originating from HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC) and confirmed that assaying ultrashort DNA is critical for sensitive cancer detection from urine samples.ResultsTR-ctDNA was concordant with plasma ctDNA for cancer detection in patients with HPV+ OPSCC. As proof of concept for using urine TR-ctDNA for posttreatment surveillance, in a small longitudinal case series, TR-ctDNA showed promise for noninvasive detection of recurrence of HPV+ OPSCC.ConclusionOur data indicate that focusing on ultrashort fragments of TR-ctDNA will be important for realizing the full potential of urine-based cancer diagnostics. This has implications for urine-based detection of a wide variety of cancer types and for facilitating access to care through at-home specimen collections.FundingNIH grants R33 CA229023, R21 CA225493; NIH/National Cancer Institute grants U01 CA183848, R01 CA184153, and P30CA046592; American Cancer Society RSG-18-062-01-TBG; American Cancer Society Mission Boost grant MBGI-22-056-01-MBG; and the A. Alfred Taubman Medical Research Institute.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Estados Unidos , Humanos , Infecciones por Papillomavirus/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , ADN de Neoplasias , Biopsia Líquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...